130 research outputs found

    Rational design and dynamics of self-propelled colloidal bead chains: from rotators to flagella

    Full text link
    The quest for designing new self-propelled colloids is fuelled by the demand for simple experimental models to study the collective behaviour of their more complex natural counterparts. Most synthetic self-propelled particles move by converting the input energy into translational motion. In this work we address the question if simple self-propelled spheres can assemble into more complex structures that exhibit rotational motion, possibly coupled with translational motion as in flagella. We exploit a combination of induced dipolar interactions and a bonding step to create permanent linear bead chains, composed of self-propelled Janus spheres, with a well-controlled internal structure. Next, we study how flexibility between individual swimmers in a chain can affect its swimming behaviour. Permanent rigid chains showed only active rotational or spinning motion, whereas longer semi-flexible chains showed both translational and rotational motion resembling flagella like-motion, in the presence of the fuel. Moreover, we are able to reproduce our experimental results using numerical calculations with a minimal model, which includes full hydrodynamic interactions with the fluid. Our method is general and opens a new way to design novel self-propelled colloids with complex swimming behaviours, using different complex starting building blocks in combination with the flexibility between them.Comment: 27 pages, 10 figure

    Microfabricated Gaps Reveal the Effect of Geometrical Control in Wound Healing

    Get PDF
    The geometry (size and shape) of gaps is a key determinant in controlling gap closure during wound healing. However, conventional methods for creating gaps result in un‐defined geometries and poorly characterized conditions (cell death factors and cell debris), which can influence the gap closure process. To overcome these limitations, a novel method to create well‐defined geometrical gaps is developed. First, smooth muscle cells (SMCs) are seeded in variously shaped micro‐containers made out of hyaluronic acid hydrogels. Cell proliferation and cell tension induce fibrous collagen production by SMCs predominantly around the edges of the micro‐containers. Upon removal of SMCs, the selectively deposited collagen results in micro‐containers with cell‐adhesive regions along the edges and walls. Fibroblasts are seeded in these micro‐containers, and upon attaching and spreading, they naturally form gaps with different geometries. The rapid proliferation of fibroblasts from the edge results in filling and closure of the gaps. It is demonstrated that gap closure rate as well as closure mechanism is strongly influenced by geometrical features, which points to an important role for cellular tension and cell proliferation in gap closure

    Microfabricated Gaps Reveal the Effect of Geometrical Control in Wound Healing

    Get PDF
    The geometry (size and shape) of gaps is a key determinant in controlling gap closure during wound healing. However, conventional methods for creating gaps result in un‐defined geometries and poorly characterized conditions (cell death factors and cell debris), which can influence the gap closure process. To overcome these limitations, a novel method to create well‐defined geometrical gaps is developed. First, smooth muscle cells (SMCs) are seeded in variously shaped micro‐containers made out of hyaluronic acid hydrogels. Cell proliferation and cell tension induce fibrous collagen production by SMCs predominantly around the edges of the micro‐containers. Upon removal of SMCs, the selectively deposited collagen results in micro‐containers with cell‐adhesive regions along the edges and walls. Fibroblasts are seeded in these micro‐containers, and upon attaching and spreading, they naturally form gaps with different geometries. The rapid proliferation of fibroblasts from the edge results in filling and closure of the gaps. It is demonstrated that gap closure rate as well as closure mechanism is strongly influenced by geometrical features, which points to an important role for cellular tension and cell proliferation in gap closure

    Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions

    No full text
    Here we present a novel surface modification method based on the sequential layer-by-layer deposition of polyelectrolytes yielding hydrophilic microchannels in PDMS-based microfluidic devices. The coatings are long-term stable and allow for the generation of monodisperse oil-in-water microdroplets even several months after the channel surface treatment. Due to the robustness of the polyelectrolyte multilayers ultra-high flow rates can be applied, making high-throughput droplet formation in the jetting mode possible. Furthermore, we successfully used our method to selectively modify the surface properties in certain areas of assembled microchannels. The resulting partially hydrophilic, partially hydrophobic microfluidic devices allow for the production of monodisperse water-in-oil-in-water double emulsions.<br/

    Microdroplet fabrication of silver–agarose nanocomposite beads for SERS optical accumulation

    No full text
    Microdroplets have been used as reactors for the fabrication of agarose beads with high uniformity in shape and size, and densely loaded with silver ions, which were subsequently reduced into nanoparticles using hydrazine. The resulting nanocomposite beads not only display a high plasmonic activity, but can also trap/concentrate analytes, which can be identified by means of surface-enhanced Raman scattering (SERS) spectroscopy. The size of the beads is such that it allows the detection of a single bead under a conventional optical microscope, which is very useful to reduce the amount of material required for SERS detectio

    Peptide-Based Coacervate-Core Vesicles with Semipermeable Membranes

    Get PDF
    Coacervates droplets have long been considered as potential protocells to mimic living cells. However, these droplets lack a membrane and are prone to coalescence, limiting their ability to survive, interact, and organize into higher-order assemblies. This work shows that tyrosine-rich peptide conjugates can undergo liquid–liquid phase separation in a well-defined pH window and transform into stable membrane-enclosed protocells by enzymatic oxidation and cross-linking at the liquid–liquid interface. The oxidation of the tyrosine-rich peptides into dityrosine creates a semipermeable, flexible membrane around the coacervates with tunable thickness, which displays strong intrinsic fluorescence, and stabilizes the coacervate protocells against coalescence. The membranes have an effective molecular weight cut-off of 2.5 kDa, as determined from the partitioning of small dyes and labeled peptides, RNA, and polymers into the membrane-enclosed coacervate protocells. Flicker spectroscopy reveals a membrane bending rigidity of only 0.1kBT, which is substantially lower than phospholipid bilayers despite a larger membrane thickness. Finally, it is shown that enzymes can be stably encapsulated inside the protocells and be supplied with substrates from outside, which opens the way for these membrane-bound compartments to be used as molecularly crowded artificial cells capable of communication or as a vehicle for drug delivery.publishedVersio

    Endocytosis of coacervates into liposomes

    Get PDF
    [Image: see text] Recent studies have shown that the interactions between condensates and biological membranes are of functional importance. Here, we study how the interaction between complex coacervates and liposomes as model systems can lead to wetting, membrane deformation, and endocytosis. Depending on the interaction strength between coacervates and liposomes, the wetting behavior ranged from nonwetting to engulfment (endocytosis) and complete wetting. Endocytosis of coacervates was found to be a general phenomenon: coacervates made from a wide range of components could be taken up by liposomes. A simple theory taking into account surface energies and coacervate sizes can explain the observed morphologies. Our findings can help to better understand condensate–membrane interactions in cellular systems and provide new avenues for intracellular delivery using coacervates

    A catalytically active oscillator made from small organic molecules

    Get PDF
    Oscillatory systems regulate many biological processes, including key cellular functions such as metabolism and cell division, as well as larger-scale processes such as circadian rhythm and heartbeat. Abiotic chemical oscillations, discovered originally in inorganic systems, inspired the development of various synthetic oscillators for application as autonomous time-keeping systems in analytical chemistry, materials chemistry and the biomedical field. Expanding their role beyond that of a pacemaker by having synthetic chemical oscillators periodically drive a secondary function would turn them into significantly more powerful tools. However, this is not trivial because the participation of components of the oscillator in the secondary function might jeopardize its time-keeping ability. We now report a small molecule oscillator that can catalyse an independent chemical reaction in situ without impairing its oscillating properties. In a flow system, the concentration of the catalytically active product of the oscillator shows sustained oscillations and the catalysed reaction is accelerated only during concentration peaks. Augmentation of synthetic oscillators with periodic catalytic action allows the construction of complex systems that, in the future, may benefit applications in automated synthesis, systems and polymerization chemistry and periodic drug delivery. </p

    Patterning electro-osmotic flow with patterned surface charge

    Get PDF
    This Letter reports the measurement of electro-osmotic flows (EOF) in microchannels with surface charge patterned on the 200 mu m scale. We have investigated two classes of patterns: (1) Those in which the surface charge varies along a direction perpendicular to the electric field used to drive the EOF; this type of pattern generates multidirectional flow along the direction of the field. (2) Those in which the surface charge pattern varies parallel to the field; this pattern generates recirculating cellular flew, and thus causes motion both parallel and perpendicular to the external field. Measurements of both of these flours agree well with theory in the Limit of thin double layers and low surface potential
    • 

    corecore